Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 170: 109559, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33476941

RESUMO

From a commercial supplier, three independent lots of an aqueous solution containing 223Ra in equilibrium with its deteriorating progeny were considered for standardization, by using live-time anticoincidence counting (LTAC) in the Laboratório Nacional de Metrologia das Radiações Ionizantes (LNMRI) Brazil. The ionization chamber calibration factors were obtained using measurements of independent lots of 223Ra in LTAC considering the absolute method in order to evaluate the constancy and reproducibility of the standardization. The calibration factors of three high-performance well-type ionization chamber systems and four commercial well-type ionization chambers were determined. The LTAC results showed that lots 2 and 3 were 1069.88 and 1097.44 kBq/kg, with corresponding relative standard uncertainties 0.12% and 0.20%, respectively. The spectrometry method results of each lot value were classified as positive by ANOVA hypothesis testing. The emission probabilities relating to the X- and γ-rays in region from 81 to 830 keV ware determined. Hence, LNMRI can provide calibration services for 223Ra.

2.
Appl Radiat Isot ; 166: 109323, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32795698

RESUMO

There are few long-lived radionuclides yielding high intensity gamma-rays emission with energies ranging from 100 keV to 500 keV that can be applied as radioactive gamma standard to calibrate HPGe detectors. Furthermore, this energy range represents the main emitted energies of the majority of radionuclides used in nuclear medicine. The Brazilian National Laboratory for Ionizing Radiation Metrology (LNMRI/IRD/CNEN) has attempted to identify radionuclides that have the potential to be used as a calibration source due to their long half-life as well as their emission spectrum. Hence, LNMRI promotes standardization studies of gamma-emitting radionuclides that meet these criteria on order to disseminate them. Thorium-229, with its well-defined energies and relatively high intensities, is one such candidate radionuclide for the energy and full-energy peak efficiency calibration of high-purity gamma spectrometers. Thorium-229 was standardized by the method of 4παß(LS)-γ(NaI(Tl)) live timed anticoincidence counting. The emission intensities of gamma-rays associated with the decay of 229Th have been determined by HPGe gamma ray spectrometry with accuracy and precision. The results are in agreement with current literature data.

3.
Appl Radiat Isot ; 134: 385-390, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29248210

RESUMO

An international key comparison, identifier CCRI(II)-K2.Ge-68, has been performed. The National Institute of Standards and Technology (NIST) served as the pilot laboratory, distributing aliquots of a 68Ge/68Ga solution. Results for the activity concentration, CA, of 68Ge at a reference date of 12h00 UTC 14 November 2014 were submitted by 17 laboratories, encompassing many variants of coincidence methods and liquid-scintillation counting methods. The first use of 4π(Cherenkov)ß-γ coincidence and anticoincidence methods in an international comparison is reported. One participant reported results by secondary methods only. Two results, both utilizing pure liquid-scintillation methods, were identified as outliers. Evaluation using the Power-Moderated Mean method results in a proposed Comparison Reference Value (CRV) of 621.7(11)kBqg-1, based on 14 results. The degrees of equivalence and their associated uncertainties are evaluated for each participant. Several participants submitted 3.6mL ampoules to the BIPM to link the comparison to the International Reference System (SIR) which may lead to the evaluation of a Key Comparison Reference Value and associated degrees of equivalence.

4.
Appl Radiat Isot ; 134: 307-311, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29153654

RESUMO

In this work, a 68(Ge+Ga) solution has been standardized at the National Institute of Ionizing Radiation Metrology (LNMRI), in Brazil, in the frame of an international key comparison CCRI(II)-K2.Ge-68 piloted by National Institute of Standards and Technology (NIST/USA). The 4πß(LS)-γ(NaI(Tl)) anticoincidence method with live-time and extended dead-time was used and its result was validated by 4πß(LS)-γ(NaI(Tl)) coincidence counting and liquid scintillation counting using the Triple to Double Coincidence Ratio (TDCR) method. The deviations of the activity concentration values of coincidence and TDCR measurements from the anticoincidence result were 1.7% and 0.63%, respectively, which were within experimental evaluated uncertainties at ~95% level of confidence (coverage factor k = 2). The combined relative standard uncertainties were 0.65%, 0.70% and 0.53% for anticoincidence, coincidence and TDCR methods, respectively. These values are consistent with the results reported by Cessna at the ICRM2017 conference.

5.
Appl Radiat Isot ; 134: 340-350, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29146526

RESUMO

The sum-peak method, an absolute measurement technique that uses coincidence counting and γ-ray spectrometry, was applied to activity standardization of 152Eu sources. The decay branch used was that of 152Sm, as it is almost entirely electron capture and exhibits X-rays with a high probability of coincidence with the 121.8keVgamma rays, as evidenced by the matrix technique used for complex decay schemes, a method for deriving counting rate equations describing coincidence summing of gamma and X-rays. The result was compared with the calibration performed by ionization chamber traceable to BIPM. The results presented uncertainty values of 0.50% (k = 1).

6.
Appl Radiat Isot ; 134: 64-67, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28942991

RESUMO

Traceability in Nuclear Medicine Service (NMS) measurements was checked by the Institute of Radioprotection and Dosimetry (IRD) through the Institute of Energy and Nuclear Research (IPEN). In 2016, IRD ran an intercomparison program and invited Brazilian NMS authorized to administer 131I to patients. Sources of 131I were distributed to 33 NMSs. Three other sources from the same solution were sent to IRD, after measurement at IPEN. These sources were calibrated in the IRD reference system. A correction factor of 1.013 was obtained. Ninety percent of the NMS comparisons results are within ±10% of the National Laboratory of Metrology of Ionizing Radiation (LNMRI) value, the Brazilian legal requirement.


Assuntos
Instituições de Assistência Ambulatorial , Radioisótopos do Iodo/análise , Serviço Hospitalar de Medicina Nuclear , Compostos Radiofarmacêuticos/análise , Brasil , Calibragem , Competência Profissional , Controle de Qualidade , Reprodutibilidade dos Testes , Fatores de Tempo , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...